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Abstract
Energy consumption of software has been becoming increasingly significant, since it can
vary according to how the software has been developed. In recent years, developers and
researchers have been interested in analyzing, among other things, how energy consump-
tion evolves when changes occur from one version to another in any given software. Thus
far, the only studies available are theoretical papers that reinforce the idea that maintain-
ability may have an influence on energy use, but this needs to be proven empirically,
which is the goal of this article. This work presents an empirical study carried out to test
whether there is a relationship between the energy consumption and the maintainability of
several versions of Redmine. Maintainability has been assessed by means of different
measures, such as the number of lines of code, or the complexity of the software,
calculated using SonarCloud, and the energy consumption measurements have been
captured using the EET device. The results obtained show that the number of lines of
code affects both the energy consumption of the processor and the total consumption of
the computer where the software is run. It is intended that the results from this work
should serve as a basis for the undertaking of new empirical studies which will enable the
relationship between the software maintainability and the energy efficiency of that
software to be better understood.
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1 Introduction

There is an ever-increasing awareness in society of the importance of environmental conser-
vation; concern for all issues related to sustainability is also growing, and software cannot be
an indifferent onlooker as regards these matters. A report by Huawei Technologies (Andrae
2017) states that even the most optimistic forecast is that in 2025 ICT will consume around
2800 TWh, which is approximately 9% of the total consumption of worldwide energy use. The
most pessimistic of the predictions asserts that the figure could be twice that mentioned above.
According to Jones (2018), the data consumption figures are even more alarming and are
projected to constitute approximately 21% of global energy consumption in 2030 .

As Chien (2019) points out, computer technologies and systems must be designed to reduce
carbon emissions and environmental impact; this becomes one of the main objectives of the
computer community. As an integral part of computer systems, and in the quest to make these
figures less intimidating, there is a need to build software products that are more sustainable,
both during their creation and in their use. Pinto and Castor (2017) remarked that, although
software systems do not consume energy themselves, they affect hardware utilization, leading
to indirect energy consumption. Energy consumption is a ubiquitous problem, and the years to
come will require developers to be even more aware of it.

Sustainable software is defined as “software, whose impacts on economy, society, human
beings, and environment that result from development, deployment and usage of the software
are minimal and/or which have a positive effect on sustainable development” (Dick and
Naumann 2010) and Software Sustainability is about the capability of software to last a long
time by using the resources strictly needed (Calero et al. 2019). Both concepts are related to the
impact of the use of software, a concern which, for some years now, has become an important
research concern, where three software sustainability dimensions can be identified, as we can
see in Fig. 1 (Calero and Piattini (2017):

& Human Sustainability: how software development and maintenance affect the sociological
and psychological aspects of people

& Economic Sustainability: how the software lifecycle processes protect stakeholders’
investments

Fig. 1 Software Sustainability dimension (Calero and Piattini 2017)
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& Environmental Sustainability: how software product development, maintenance, and use
affect energy consumption and the usage of other resources

The Environmental Sustainability dimension, also known as Green Software, which is the
focus of this work, promotes improvement in the energy efficiency of software, minimizing its
environmental impact and having a positive impact on the other two dimensions
(Penzenstadler et al. 2014).

Green Software requirements also influence other aspects of software quality (Jagroep et al.
2017), so it is important to analyze whether there is a relationship between them and other
already well-known characteristics of the quality (such as those included in the ISO 25010
standard-ISO (2011)). In fact, there are a number of studies which demonstrate that the use of
good practices in software engineering can improve energy efficiency. For example,
Procaccianti et al. (2016) established that the optimization of the consultation in MySQL
Server, by means of the limitation of the indexation mechanism or the reduction of unneces-
sary operations (such as the use of the clause ORDER BY), would enable energy consumption
of database consultations to be reduced. Capra et al. (2012) indicated that, depending on the
particular application layer design, the energy consumption of a server could potentially
increase by up to 72% more. In the study presented by García-Mireles et al.
(2018), and more directly related to the object of this work, the interaction between
the quality characteristics and energy efficiency is analyzed, though only in a theo-
retical manner. They identify a set of quality characteristics that can have a positive
or negative influence on the consumption of software.

The main objective of this article is to analyze the relationship between the maintainability
of a software application and its energy consumption. In our effort to achieve our goal, we will
carry out a case study with different versions of Redmine software, aiming to study how its
maintainability has evolved, and if there is any relationship between that maintainability and
the energy required when the application is run. The software’s maintainability will be
assessed with the SonarCloud1 tool, using as maintainability measures the total number of
lines of code, the cyclomatic complexity, the number of comments, or duplicated lines in the
source code. The energy consumption will be obtained from a representative set of test
scenarios using EET, a device that measures the consumption of software when it is run.
Using EET, we can discover the energy consumption of the computer where the Redmine
software is running. In addition, EET allows us to obtain the energy consumed by the
processor, hard disk, and graphic card. This data will allow us to make an initial approach
to assessing the possible relationship between maintainability and energy consumption.

The rest of the document is structured as follows. The empirical study carried out is
presented in Section 2: its scope and objectives, setting, the protocol followed, the variables
chosen, and the formulation of the hypotheses. In Section 3, the results obtained in the study
are set out in detail. The most important threats to the validity of our study are presented in
Section 4, and information is provided which would make the experiment verifiable and
possible to replicate by other researchers. Section 5 presents the work found that is related to
the topic and the main differences between them and our study. Lastly, in Section 6, the
conclusions of this work are set out, and there is a presentation of the follow-up research
activities which are proposed.

1 SonarCloud. https://sonarcloud.io
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2 Empirical evaluation of the impact of software maintainability
on software energy consumption

To present the objective of our empirical evaluation, we are going to use the recommendations
of Wohlin et al. (2012), based on the application of the Goal/Question/Metric (GQM) method.
Our objective is thus defined as follows:

& Analyze the Energy Efficiency
& for the purposes of Evaluating its Interaction with Maintainability
& in terms of Energy Consumption
& from the point of view of Software Developers
& in the context of Software Application.

To give direction to our objective, the following research question is posed:
RQ. Is there a relationship between the energy consumption of the software when it is being

run and its maintainability?
The answer to this question will allow us to discover the relationship that the different

maintainability measures have with energy consumption.
To ensure the consistency and reliability of our work, we are going to follow the Green

Mining methodology defined by Hindle (2012) for conducting experiments where energy
consumption measurements are employed. This methodology is composed of seven activities:
(1) choose the software products and the context in which it should be checked, (2) decide the
types of data that will be registered, (3) choose a set of versions of the software, (4) develop the
test cases that are to be run, (5) configure the testing ground, (6) carry out the measurements
for each version and gather the data registered, and (7) analyze the results. Figure 2
shows the process followed, highlighting the main elements of our study which are
considered in each activity.

2.1 Choose the software products and the context in which it should be tested

The first step is to select the software products to be analyzed in the case study. These software
products must meet the following criteria: (i) each of the software products must be available
for installation and execution. In addition, source code must be available for analysis; (ii) the
selected software products must include at least the same functionalities. In order to achieve

Fig. 2 Green mining methodology
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the established criteria, and taking into account that we are interested in the relationship
between maintainability and energy consumption, we decided to use different versions of
the same software product. Thus, all versions will include at least the same functionalities.
Note that each version selected will be analyzed as a standalone software product.

In our study, the chosen software products are different versions of Redmine,2 a tool for
software project management that allows users to follow up and control multiple projects
simultaneously. It includes several functionalities, such as follow-up of incidents, calendar of
activities, links to a configuration management repository, forums, wikis, and so on.

As far as the context in which the experiment is carried out is concerned, different tools
needed to be used:

& We have used the SonarCloud3 platform in the evaluation of the software maintainability;
this platform is a cloud service for the ongoing inspection of code quality. It supports a
great quantity of programming languages, offering detailed information on software
maintainability measurements, among these being the ones used in our analysis and which
are set out in detail later in this work.

& To evaluate the energy efficiency of the software, we have used a framework (Framework
for Energy Efficiency Testing to Improve eNviromental Goals of the Software) which
makes it possible to measure, analyze, and visualize the energy consumption of a software
application (see Fig. 3). FEETINGS is made up of two main elements: (i) a device that
allows us to measure the energy consumption of a set of hardware components (processor,
hard disk, graphics card, and general consumption) when a software product is run in the
DUT (device under test) (Mancebo et al. 2018) and (ii) the software application, known as
Software Energy Assessment (SEA), which processes the data gathered by the EET,
analyzes them, and generates an appropriate visualization of the results (depending on
the nature of each).

The configuration of the DUT used to run the empirical study is shown in Table 1.
As may be observed in the specifications, the DUT is a PC with a configuration that
is conventional in this type of computers. A DUT without special capacities for
processing or storage is chosen so that the results will be more generalizable, since
the computer is similar to those in normal use.

2.2 Deciding the types of data that will be registered

The next step (Activity 2) is to decide on the variables to be used to carry out the experiment.
The independent variables are the measures used in the evaluation of the maintainability of

the software analyzed, which will be obtained using the SonarCloud. The maintain-
ability measures are Total Lines of Code, TLOC (M1); the Cyclomatic Complexity, CC
(M2); the Percentage of Comments in the Code, PCC (M3); and the Percentage of
Duplicate Code lines, PDC (M4).

The dependent variable is the energy used. To calculate it, we will use Power
Consumptions, PC (M5), obtained with EET (see Section 2.1), and the Execution

2 Redmine. https://www.redmine.org
3 SonarCloud. https://sonarcloud.io
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Time, ET (M6). With these two measures, we obtain the value of the dependent
variable, named Energy Consumption, EC (M7), calculated as:

M7 ¼ M5*M6:

The Energy Consumption (M7) is going to be refined in four measures (one for each hardware
device), by which EET allows us to obtain the value M5 for consumption, calculated using the
ET (M5), and the PC value (M6) for each consumption sensor of the EET: PCProc (power
consumption of the processor), PCHdd (power consumption of the hard disc), PCGraph
(power consumption of the graphics disc), and PCTotal (total power consumption). We will
therefore have the following measures associated with M7 (EC): ECProc = (PCProc/ET),
ECHdd = (PCHdd/ET), ECGraph = (PCGraph/ET), and ECTotal = (PCTotal/ET).

Based on the measures selected in the design of the empirical evaluation, and in order to
answer the defined research question, the following hypotheses have been defined. Each of the
hypotheses will be studied for the four variables of energy consumption in which the M7
measure has been refined:

& H10, Null Hypothesis: The software Energy Consumption (M7 - ECProc, ECHdd,
ECGraph, and ECTotal) is not affected by the maintainability measure of Total Lines of
Code (M1).

Fig. 3 FEETINGS overview

Table 1 Specifications of the DUT used for experiment

Hardware Motherboard: Asus M2N-SLI Delux
Processor: AMD Athom ×2 6000+
HDD: Seagate barraCuda 7200 rpm 500 GB
RAM: 4 × 1 GB 666 MHz Kingston
Graphics Cards: Nvidia GForce 8600 GTS

Operating system Xubuntu 16.04.2 LTS
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& H11, Alternative Hypothesis: The software Energy Consumption (M7 - ECProc,
ECHdd, ECGraph, and ECTotal) is affected by the maintainability measure of
Total Lines of Code (M1).

& H20, Null Hypothesis: The software Energy Consumption (M7 - ECProc, ECHdd,
ECGraph, and ECTotal) is not affected by the Cyclomatic Complexity measure (M2).

& H21, Alternative Hypothesis: The software Energy Consumption (M7 - ECProc, ECHdd,
ECGraph, and ECTotal) (M2) is affected by the Cyclomatic Complexity measure (M2).

& H30, Null Hypothesis: The software Energy Consumption (M7 - ECProc, ECHdd,
ECGraph, and ECTotal) is not affected by the maintainability measure of Percentage of
Comments in the Code (M3).

& H31, Alternative Hypothesis: The software Energy Consumption (M7 - ECProc, ECHdd,
ECGraph, and ECTotal) is affected by the maintainability measure of Percentage of
Comments in the Code (M3).

& H40, Null Hypothesis: The software Energy Consumption (M7 - ECProc, ECHdd,
ECGraph, and ECTotal) is not affected by the maintainability measure of Percentage of
Duplicate Code Lines (M4).

& H41, Alternative Hypothesis: The software Energy Consumption (M7 - ECProc, ECHdd,
ECGraph, and ECTotal) is affected by the maintainability measure of Percentage of
Duplicate Code Lines (M4).

2.3 Choosing a set of software versions

In this stage (Activity 3), it is necessary to select the software versions, in our case, as explained
in Activity 1, the different versions of Redmine.

In order to have a sample representative enough of, on the one hand, the evolution of
Redmine and, on the other hand, the influence of maintainability on the energy consumption, 4
different versions of Redmine were selected, according to a series of criteria: (i) all the versions
had to include at least the same functionalities; (ii) the source code had to be available for its
analysis and execution; and (iii) the launch dates between the versions chosen had to be
sufficiently separated for the needed evolution to take place and for there to be differences
between the values of the maintainability metrics. The only exception was version 3.4.6, which
was selected because it was the most up to date at the time of the study. Table 2 shows the set
of versions of Redmine chosen and their main features.

As a result of this selection process, we consider that the four versions of Redmine chosen
are representative enough to obtain a first insight about the relationship between maintainabil-
ity and energy consumption of software; this can serve as a starting point for expanding the
study in the future with new versions and other software applications.

2.4 Developing the test cases to be run

Activity 4 is the creation of the test cases that are going to be run in the DUT. The following
test cases were defined for this study. With the selected test cases, we consider that we comply
with a high level of code coverage, including also the main functionalities of Redmine.

a. Creation of a new project: With the role of administrator, create a new project, by entering
the necessary data. These data are the name of the project, an identifier and a description.
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b. Creation of a new user: With the role of administrator, register a new user, filling in
information such as the identifier, first name and surname and email and ticking the option
of an automatic generation of a password.

c. Creation of a new task: As a user, create a new task in a project created previously. The
task must be completed, along with the description of this task, as well as its type, its
status, and the person assigned to the task.

d. Simulation of progress: As a user, conduct a simulation of how a task would progress,
modifying the percentage of completion and the number of hours to be taken. The Gantt
diagram is also consulted.

2.5 Configuring the test ground

Before the measurement is begun, the DUT where the test cases are going to be run (Activity
5). All the test cases were run on the same computer, with the specifications that were set out at
the beginning of this section. The following steps were taken in carrying out the configuration
of the DUT: (i) first of all, the different services that are included in the operative system are
deactivated. These services, such as updates, virus scans, etc. are ones which run automati-
cally, and they may add noise to the measurements; (ii) after that, the version of Redmine that
is to be analyzed is installed; (iii) the software measurements are made; (iv) once the
measurements for one of the versions of the selected software products are completed, the
DUT is restored, such that it returns to its initial state. This procedure is repeated for the
different versions of the software that are going to be assessed.

2.6 Carrying out the measurements and gathering the data registered for each
software product

In Activity 6 the measurements for each version of the software are carried out, and the data are
gathered. The “GreenMining”method does not provide any protocol as to how to undertake the
measurement in a way that is valid and reliable. Jagroep et al. (2016) present a measurement
protocol, in which an extension of Activity 6 from the “green method” mining is carried out,
setting out in detail the specific tasks that have to be carried out. For the purposes of our study,
we have adopted this protocol to conduct the measurement of energy using the FEETINGS
framework, such that Activity 6 is made up of the following tasks Jagroep et al. (2016):

i. Carry out the configuration of the test ground.
ii. Check that there are no other applications being run in the background.
iii. Close down all unnecessary applications.
iv. Start up the software that is to be evaluated.

Table 2 Versions of Redmine selected

ID SW product Last modified Rails version Ruby version Database version

SW1 Redmine 2.5.1 Mar. – 14 3.2.16 1.9.3 MySQL 5.5
SW2 Redmine 3.2.0 Dec. – 15 4.1.7 2.0.0 MySQL 5.6
SW3 Redmine 3.4.3 Sep. – 17 4.1.7 2.3.5 MySQL 5.6
SW4 Redmine 3.4.6 Jun. – 18 4.1.7 2.3.6 MySQL 5.6
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v. Begin the energy consumption measurement, and run the test cases that have been defined.
vi. Gather the data.
vii. Verify the data and check whether there are outliers in the measurements; if there are

atypical values, these are rejected.
viii. Return the setting to its initial state.

This will be the measurement protocol which we will follow in carrying out the
measurements of energy consumption. In addition, in order to ensure the consistency
of the measures undertaken, the task of Begin the measurement and run the test cases
(v) will be repeated 20 times for each of the test cases that have been identified in
Activity 4. As this is a controlled environment, the 20 measures are usually of a big
enough sample size for the impact of the atypical values to be mitigated (as is the
case, e.g., for the consumption of the energy that is dedicated to the tasks of the
operative system). For this reason, unlike what Jagroep et al. propose in step VII,
possible outliers have not been eliminated in this experiment, and they have been
taken into account in the subsequent analysis.

The protocol used to obtain the maintainability measurements is simpler and is limited to
loading the source code of the version chosen in the SonarCloud, as well as to recovering the
values obtained by that tool.

2.7 Analyzing the results

Lastly, Activity 7 is carried out, in which the results obtained for each of the selected software
products are analyzed and presented in Section 3.

3 Results of empirical evaluation

This section corresponds to Activity 7 of the protocol, where the results obtained are presented.
Firstly, the data extracted from the measurements of maintainability and of energy consump-
tion (M1 to M7) are set out. We then go on to answer the hypothesis in Section 2.2. Lastly, the
most significant findings are discussed.

3.1 Descriptive statistics

Table 3 shows the maintainability values that were extracted from the SonarCloud tool
for each of the chosen versions of Redmine. The values that appear in brackets
indicate the variation of each measurement with respect to that of the previous
version. The values of the Total Lines Of Code and of Cyclomatic Complexity have
increased in the latest versions. Nevertheless, the Percentage of Comments in the
Code has decreased in each of the most recent versions; the only exception is version
3.4.6, where there is a slight rise. The Percentage of Duplicate Code Lines increased
between version 2.5.1 and version 3.2.0, but in later versions this value was lower.

It is important to highlight that the variations between version 3.4.3 and version 3.4.6 are
not very large. This is because the latter is a small-scale update of the previous version, so there
are no important changes.
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To obtain the Energy Consumption (M7), the value of the Power Consumption (M5) is
used for each of the EET sensors and the Execution Time (M6). The values of Energy
Consumption for each of the Redmine versions when the test cases are run can be found in
Tables 4, 5, 6, and 7; each table contains the information about the energy consumption of
each of the sensors available in EET (ECProc, ECHdd, ECGraph, and ECTotal). For the 20
executions carried out, the respective tables show the mean consumption (in Watts per
second), the standard deviation, the median, and the maximum and minimum values of the
consumption found. In addition, the difference between the mean of the energy consumption
and that of the previous version is shown in brackets. Figure 4 shows, in diagram form, the
results for the means from Tables 4, 5, 6, and 7.

From the results obtained for the maintainability measurements of the four versions
(Table 3) and the consumption of these versions (Tables 4, 5, 6, and 7), we can observe that:

& The amount of Total Lines Of Code (M1) and of Cyclomatic Complexity (M2) increases
in each version. However, the Percentage of Comments in the Code (M3) and of
Percentage of Duplicate Code Lines (M4) do not follow this pattern. The value of M3
has a lower value in all versions except in the latest one; the M4 values increase in the
second version analyzed but decrease in the following ones.

& As regards the energy consumption (M7), the ECTotal increased in each version (between
7% and 20% more). The same thing happens if we observe the energy consumption values
of the processor (ECProc), where it can be seen that it increased in each of the most recent
versions (a variation of between 4% and 24%). In addition, the energy consumption of the
hard disk (ECHdd) and of the graphics card (ECGraph) did not follow the same pattern of
increasing in the latest versions. ECHdd has been increasing right up to version 3.4.6,
where the value in this case is lower: it is around 4%, the same as in version 3.4.3. In the
case of ECGraph, there was a large increase (more than 13%) between version 2.5.1 and

Table 3 Redmine maintainability measurements

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

TLOC (M1) 109,005 128,677 (+18.05%) 138,321 (+ 7.49%) 138,792 (+ 0.34%)
Cyclomatic Complexity (M2) 13,709 13,988 (+2.04%) 15,132 (+ 8.18%) 15,181 (+ 0.32%)
% of comments (M3) 12.50% 10.40% (−16.8%) 10.10% (− 2.88%) 10.11% (+ 0.1%)
% of duplications (M4) 13.10% 24.60% (+87.79%) 20.80% (− 15.45%) 20.70% (− 0.48%)

Table 4 Descriptive statistics of ECProc (in Watts per second)

Redmine Versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

Mean 393.08 491.01 (+ 24.91%) 518.54 (+ 5.61%) 538.81 (+ 3.91%)
Standard deviation 25.51 20.06 21.03 31.86
Median 389.90 488.22 515.07 565.98
Max 429.21 535.25 563.55 630.59
Min 356.03 457.75 479.69 516.44
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3.2.0, but in the following versions, the consumption of the graphics card decreased by
around 3% compared to its previous version.

As has been indicated, the results of the energy consumption were evaluated together for the
four test cases defined in Section 2.4. We also believe it to be of interest to analyze the impact
on the energy consumption registered by the EET sensors for each of the functionalities
demonstrated in the test cases.

In Tables 8, 9, 10, and 11, this information is set out, along with the differences in the mean
energy consumption that exist between each of the versions.

With the results of the energy consumption listed for each of the four test cases that had
been defined, we can see that:

& The energy consumption of the processor (ECProc) increased in each version for the four
test cases proposed. It was between version 2.5.1 and version 3.2.0 that there was most
variation of the ECProc; it reached more than 78% in Test Case A.

& The values of energy used by the hard disk (ECHdd) and the graphics card (ECGraph) do
not seem to follow any pattern, since the values do not increase in any of the versions; in
others they decrease.

& The total energy consumption (ECTotal) increased in all the versions of the four test cases
(between 5% and 58% more), except in Test Case D, where the energy consumption in the
latest version fell (almost 15% less) with respect to the one that preceded it.

& Another aspect to bear in mind is that in Test Case C (Create a new task), the consumption
values of ECProc and ECTotal suffered a greater variation (of + 22% and + 36%,
respectively) between version 3.4.6 and 3.4.3 than there was between the other versions,
in spite of the fact that, if we look at the data obtained by SonarCloud, the differences
between both versions were actually quite small.

Table 5 Descriptive statistics of ECHdd (in Watts per second)

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

Mean 1549.18 1627.45 (+ 5.05%) 1814.46 (+ 11.49%) 1740.91 (− 4.05%)
Standard deviation 106.81 69.86 95.71 98.04
Median 1531.08 1633.47 1826.13 1730.38
Max 1700.01 1800.57 1996.63 1938.21
Min 1375.97 1501.39 1648.15 1576.27

Table 6 Descriptive statistics of ECGraph (in Watts per second)

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

Mean 133.17 151.31 (+ 13.62%) 146.76 (− 3.01%) 143.16 (− 2,45%)
Standard deviation 9.08 9.23 7.15 10.42
Median 131.71 151.34 148.72 139.27
Max 147.52 173.71 159.32 170.70
Min 114.64 135.66 134.05 128.41
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3.2 Data analysis

In this section, the hypotheses posed in Section 2.2 are tested. To that end, we are going to
study whether the energy consumption (M7) obtained for each of the EET measurement
sensors (ECProc, ECHdd, ECGraph, and ECTotal) is affected or not by the maintainability
measurements (M1, M2, M3, and M4) whose values were obtained by using SonarCloud.

First of all, the mean value of energy consumed was calculated using the data of Power
Consumption (M5) of each of the sensors and the Execution Time (M6) for each of the chosen
Redmine versions.

Subsequently, aiming to find out whether the energy consumption data followed a normal
distribution, a normal Q-Q plot analysis was carried out, as shown in Fig. 5.

Once it was demonstrated that the data did indeed have a normal distribution, a hypothesis
check was conducted, using the Pearson correlation coefficient. The aim was to check whether
the maintainability measurement values can be significant with respect to the energy con-
sumption values. In our hypothesis test, we worked with a significance value of p-level = 0.05.

Table 7 Descriptive statistics of ECTotal (in Watts per second)

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

Mean 11,493.27 13,852.33 (+ 20.53%) 15,560.97 (+ 12.33%) 16,697.93 (+ 7.31%)
Standard deviation 757.58 613.26 565.96 881.87
Median 11,360.33 13,813.39 15,663.27 16,459.58
Max 12,885.66 15,469.07 16,556.68 18,748.81
Min 10,346.38 12,759.73 14,545.35 15,325.52

Fig. 4 Energy consumption for each Redmine version according to the hardware component
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We will now set out the results obtained for each set of hypotheses:

H1: Total Lines Of Code (M1) – Energy Consumption (M7)

The results obtained from calculating the Pearson correlation coefficient (see Table 12)
between the Total Lines Of Code (M1) and the energy consumption measured by each of
the sensors (ECProc, ECHdd, ECGraph, and ECTotal) enable us to establish that there is a
significant correlation between the consumption of the processor (ECProc) and Total Lines Of
Code, with a p-level of 0.0357.

There is a significant correlation between the total consumption of the DUT (ECTotal, with
a p-level of 0.0317), allowing us to be certain that the TLOC for both components are
significant as far as the energy consumption of the application is concerned.

In addition, in both cases, the correlation value is close to 1. This tells us that there is a
strong positive relationship between the variables ECTotal and ECProc and TLOC; in other
words, the more lines of code (M1) there are, the greater the increase in energy consumption
(M7), both of the processor and of the computer in which the software is being run.

It therefore seems that the TLOC (M3) maintainability measurement affects the energy
consumption of the processor (ECProc), and the total consumption of the computer (ECTotal),
meaning that the alternative H11 can be accepted for these cases.

H2: Cyclomatic Complexity (M2) – Energy Consumption (M7)

Having calculated the Pearson coefficients between Cyclomatic Complexity (M2) and the
Energy Consumption (ECProc, ECHdd, ECGraph, and ECTotal), which are shown in
Table 13, it cannot be concluded that there is any significant correlation between CC and
the energy consumption measurements. Taking these data into account, it is not possible to
reject the null hypothesis H20, and we can therefore not conclude that energy consumption
may be affected by the Cyclomatic Complexity in any of the measurements of the sensors.

H3: Percentage of Comments in the Code (M3) – Energy Consumption (M7)

Table 8 Energy consumption, in watts per second, of Test Case A (Create a new product)

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

ECProc 67.27 120.11 (+ 78.55%) 122.74 (+ 2.19%) 128.04 (+ 4.32%)
ECHdd 383.68 415.30 (+ 8.24%) 416.28 (+ 0.24%) 443.21 (+ 6.47%)
ECGraph 31.59 39.70 (+ 25.66%) 34.76 (− 12.43%) 34.09 (− 1.94%)
ECTotal 2215.20 3507.39 (+ 58.33%) 3894.39 (+ 11.03%) 3964.20 (+ 1.79%)

Table 9 Energy consumption, in watts per second, of Test Case B (Create a new user)

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

ECProc 97.01 109.27 (+ 12.63%) 112.84 (+ 3.27%) 122.13 (+ 8.23%)
ECHdd 356.78 365.62 (+ 2.48%) 356.01 (− 2.63%) 375.33 (+ 5.43%)
ECGraph 29.18 34.36 (+ 17.75%) 28.04 (− 18.40%) 32.10 (+ 14.48%)
ECTotal 2831.50 3195.66 (+ 12.86%) 3352.10 (+ 4.90%) 3412.64 (+ 1.81%)
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Table 14 displays the results obtained from calculating the Pearson correlation coefficient for
the Percentage of Comments in the Code (M3) as regards the energy consumption of each of
the components analyzed (ECProc, ECHdd, ECGraph, and ECTotal). On analyzing the
results, we cannot affirm that the PCC correlates significantly with energy consumption, so
the null hypothesis H30 would be accepted, since there are no indications that this quality
characteristic (M3) affects the energy consumption (M7).

H4: Percentage of Duplicate Code Lines (M4) – Energy Consumption (M7)

The results obtained from the Pearson correlation between the Percentage of Duplicate Code
Lines (M4) and the energy consumption for each of the sensors (ECProc, ECHdd, ECGraph,
and ECTotal), as shown in Table 15, enable us to establish that in all cases the p-level is above
the level adopted as significant. These data do not allow us to affirm that there is any
relationship between both measurements, so we cannot reject the null hypothesis H40 in any
of the cases. We can therefore not certify that the PCD (M4) may affect the energy
consumption.

4 Discussion

When all the data of the correlation between the different maintainability measurements
chosen have been analyzed, together with the measurements of consumption obtained by the
different sensors of the measurement device, we can determine that the consumption values do
not follow a pattern between the different software versions. We can thus affirm that the
maintainability measurements do not affect the consumption of each of the hardware compo-
nents to the same extent.

This makes it necessary to analyze the consumption of each hardware component indepen-
dently, so that their correlation with the measurement measures evaluated by the SonarCloud
can be seen. The findings are that:

Table 10 Energy consumption, in watts per second, of Test Case C (Create a new task)

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

ECProc 128.72 137.02 (+ 6.45%) 155.95 (+ 13.82%) 190.80 (+ 22.34%)
ECHdd 463.15 448.92 (− 3.07%) 628.12 (+ 39.92%) 527.73 (− 15.98%)
ECGraph 41.59 41.49 (− 0.22%) 49.89 (+ 20.24%) 43.88 (− 12.05%)
ECTotal 3631.32 3776.43 (+ 4.00%) 4358.03 (+ 15.40%) 5951.85 (+ 36.57%)

Table 11 Energy consumption, in watts per second, of Test Case D (Simulate progress)

Redmine versions

Redmine 2.5.1 Redmine 3.2.0 Redmine 3.4.3 Redmine 3.4.6

ECProc 100.07 124.61 (+ 24.52%) 127.00 (+ 1.92%) 127.84 (+ 0.66%)
ECHdd 345.56 397.61 (+ 15.06%) 414.04 (+ 4.13%) 394.64 (− 4.69%)
ECGraph 30.81 35.75 (+ 16.05%) 34.07 (− 4.71%) 33.09 (− 2.88%)
ECTotal 2815.26 3372.84 (+ 19.81%) 3956.45 (+ 17.30%) 3369.25 (− 14.84%)

Software Quality Journal



& There seems to be no correlation between the energy consumption of the graphics card
(ECGraph) and the classic maintainability measurements. This result could be expected,
since the Redmine software does not make intensive use of graphics, given its nature.

& There appears to be no correlation between the energy consumption of the hard disk
(ECHdd) and the classic maintainability measurements. The main functionalities of the
Redmine tool do not stress hard disk storage. This provides justification for the fact that the
results do not show a correlation between the maintainability measures and the energy
consumed by the hard disk.

& There does seem to be a relationship between the energy consumption of the processor
(ECProc) and the maintainability measurement of TLOC (M1).

& There does appear to be a relationship between the energy use of the total DUT consump-
tion (ECTotal) and the maintainability measurement of the TLOC (M1).

& Although it was not possible to prove that there is a correlation between the cyclomatic
complexity (M2) and the consumption, values that were close were obtained for the
processor and the graphics card. Taking these results into account, new measurements
with a greater number of samples need to be taken in order to confirm if this relationship
exists, to see if there really is an influence between both variables.

To answer the research question posed, and taking as a basis the results and analyses carried
out, we can conclude that the TLOC (M1) maintainability measurement, when compared with
empirical evidence, affects the energy consumption of the processor (ECProc) and of the DUT
(ECTotal).

Fig. 5 Q-Q plots of the distribution of energy consumption measurements

Table 12 Pearson correlation analysis for the H1 hypothesis

HW component T df p-level Coefficient

Processor 5.149 2 0.0357 0.9643
Hard disk (HDD) 3.1272 2 0.0888 0.911
Graphics card 1.4559 2 0.2827 0.7173
Total DUT 5.48 2 0.0317 0. 968
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4.1 Limits of the empirical evaluation

This section sets out the threats to the validity of the study carried out, which have to be taken
into account so that it can be understood to what extent the results are valid (Wohlin et al. 2012).

4.2 Threats to construct validity

The main threat to construct validity is related to whether the measurements that we are using
both for consumption and for maintainability do actually measure those factors.

To measure consumption, we have used EET, a device that has been validated and used
previously in other measurements of this type.

We have used SonarCloud to measure maintainability, which is a tool that is widely
recognized and accepted by professionals and academics from Software Engineering and
which can also be considered trustworthy.

We believe that we are indeed obtaining values for all the measures defined, which is what
we are pursuing.

4.3 Threats to internal validity

The threats to internal validity are those uncontrolled factors that may affect the results of the
experiment. In our case, we are referring to threats related mainly to the DUT in which the
measurements are conducted. As already mentioned, as our DUT, we try to use a computer
with similar characteristics to one that can be bought on the market. In this study, measures
have been taken to ensure that the DUT was always in the same conditions for the running of
each different test scenario. One factor that could have affected the internal validity was the
operating system used, since in the measurements of the experiment, the consumption
generated by the operating system is included in the energy used by the software.

Nonetheless, as it was run on the same computer and under the same conditions, this consump-
tion produced by the operating system is always present. In addition, given the possibility that some
of the operative system processes (as updates) will be activated during themeasurement, each one of
these is carried out 20 times, thereby mitigating the impact of the atypical values.

Table 13 Pearson correlation analysis for the H2 hypothesis

HW component T df p-level Coefficient

Processor 1.4606 2 0.0595 0.705
Hard disk (HDD) 0.768 2 0.5225 0.4774
Graphics card 7.5714 2 0.0617 0.9827
Total DUT 1.097 2 0.387 0.61

Table 14 Pearson correlation analysis for the H3 hypothesis

HW component T df p-level Coefficient

Processor − 3.707 2 0.0657 − 0.9343
Hard disk (HDD) − 2.065 2 0.1749 − 0.825
Graphics card − 2.2583 2 0.1525 − 0.8475
Total DUT − 3.05 2 0.092 − 0.907
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4.4 Threats to external validity

The external validity is related to the capacity to be able to generalize the results obtained in
the experiment so that they will be relevant for other cases.

& Software selection: We have worked with four versions of Redmine in our analysis. It is
obvious that the selection of a greater number of applications and versions would have
meant that better results could have been extracted, but we believe that four versions are
enough for us to be able to have indications of the interaction between the maintainability
and the energy consumption. In addition, in the endeavor to mitigate possible effects, the
selection of the versions was undertaken following criteria of functionality and availability
of the source code. There also had to be a time separation that was great enough for there
to be notable changes, since it is impossible to know about the changes carried out in each
version in any detail. Nevertheless, as only four versions of Redmine have been consid-
ered, the results presented in this article should be considered promising introductory
results. Another aspect to take into account is that each of the versions analyzed uses a
different version of the programming language. This may influence the results, but we
believe that when studying how the evolution of a software affects its energy expenditure,
it is logical that the versions used may vary in their maintenance.

& Empirical validation setting: Our experiments were conducted in a controlled setting, so
they might have been different in different settings. One of the main factors that could have
had an influence on the measurements of energy consumption is the configuration of the
DUT in which the software being evaluated is run. We do believe, however, that although
we might have obtained differences in the values of the measurements, the correlations that
exist between these values will be maintained, thereby obtaining the same results.

& Measurement hardware device (EET): The EET device was used to carrying out the
measurement of the energy consumption. EET enables there to be exact measurements of
the energy consumed by the different hardware components in a very small interval of time
(approximately 90 samples per second). Obviously, the measurements obtained are spe-
cific to EET and may differ if we use other mechanisms as an estimate, or if we employ
other devices (where they exist). This device has been validated and compared with
another measuring device in Mancebo et al. (2018). The energy consumption results
obtained by both devices were similar. In addition, EET has previously been used in other
similar measurements

& Verifiability

In this work, a study was conducted to find out if there is a correlation between the
maintainability and the energy consumption of the software. It is our belief that this work
provides empirical evidence for the field of software energy efficiency, a field that still requires

Table 15 Pearson correlation analysis for the H4 hypothesis

HW Component T df p-level Coefficient

Processor 2.5273 2 0.1273 0.705
Hard disk (HDD) 4.3603 2 0.0687 0.9512
Graphics card 0.5104 2 0.6605 0.3394
Total DUT 3.9 2 0.0598 0.94
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more evidence if solid bases and principles are to be provided (Verdecchia et al. 2017)4. In our
effort to make our work more robustly replicable, all of the raw data obtained, the scripts used,
and the analyses performed have been made available to whoever should need to consult them
or anyone who might wish to replicate the study.4

5 Related work

The relationship between energy consumption and other quality characteristics is an area that is
barely explored in the literature, and this is also true regarding the direct relationship of energy
consumption with maintainability; however, a number of relevant pieces of work can be found.
García-Mireles et al. (2018) present a systematic mapping study (SMS) in which, from a
theoretical point of view, they identify and classify the potential interactions between the
quality characteristics of the software product (set out in the ISO25010) and sustainability in
the software context. The authors highlight various quality characteristics that may affect
energy efficiency either positively or negatively. For example, increasing or improving the
security or the modularity of the source code (maintainability characteristic) produces a
negative interaction with energy efficiency and an ensuing increase in the software energy
consumption. These authors also point to characteristics that have a potentially positive impact
on sustainability (reusability, reliability, and usability) and highlight characteristics that may
have a positive or negative influence on consumption (functional suitability, performance
efficiency). In any case, as has already been commented, this work was carried out from a
merely theoretical point of view.

In Calero et al. (2013), a systematic literature review is developed, in an effort to find out
the current state of the art in measurements of software sustainability. They discovered that the
measures that focused on sustainability also dealt with other quality characteristics from the
25,010 + S product quality model, such as performance efficiency, maintainability, portability,
usability, and reliability.

As far as maintainability is concerned, García-Rodríguez de Guzmán et al. (2015) present
the term “Ecological Debt,” referring to the impact that some of the typical defects of software
have on sustainability. There are also studies which look at the impact that the use of code
refactoring patterns has on the energy consumption. However, there are no consistent results,
since some of the articles identify a positive interaction with energy efficiency (Sahin et al.
2014), while others conclude that refactoring techniques can increase consumption (Park et al.
2014; Pérez-Castillo and Piattini 2014). Also related to the refactoring of the code smell is the
work of Verdecchia et al. (2018), where they conclude that refactoring code smells could be a
viable process to significantly improve the energy efficiency of the software but emphasize the
need for further in-depth research on this issue.

Hindle (2015) presents a study that is applied to different versions of three applications
which deals with the impact that the changes in software have on energy consumption
(Firefox, Vuze, rTorrent). Although the results showed variation in energy consumption
between the versions, it was not possible to establish that these variations were in fact related
to changes in the software.

4 http://alarcos.esi.uclm.es/sustainabilityandmaintainability
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Radu (2018) describes the ecological benefits brought about through the reuse of software.
Jelschen et al. (2012), for their part, expose that some reengineering techniques improve the
energy efficiency of mobile applications.

Pereira et al. (2020) propose a spectrum-based energy leak detection technique to identify
inefficient energy consumption in the source code of software systems. This technique uses a
statistical method to associate the energy consumed with the different components of the
source code of a software system, thus drawing the developer’s attention to the most critical
red points in his code.

In Pereira et al. (2017), the authors analyze the performance of twenty-seven software
languages, providing a list of the most efficient programming languages, so that software
engineers can decide which language to use when energy efficiency is a concern. A similar
work is proposed by Lima et al. (2019), where they carry out a study of the energy efficiency
of software programs developed in the Haskell programming language. In addition, they
provide a set of guidelines to help Haskell developers save energy.

Linking maintainability to the energy efficiency of Android software is the work of Cruz
et al. (2019). In this article, the authors study the impact of changes designed to improve
energy efficiency on the maintainability of Android applications. Their results show that
improved energy efficiency is accompanied by a significant decrease in maintenance capacity.
Palomba et al. (2019) propose a study of the relationship between code smells in Android
applications and energy efficiency.

Table 16 summarizes the works mentioned above, from the point of view of the relationship
between energy consumption and software maintainability, and compares them with our study.
For each work, it is indicated whether the approach is theoretical or practical, which charac-
teristics are analyzed, the measurements the measurement method used, and the hardware
components evaluated.

As can be observed in Table 16, only five pieces of work relate energy efficiency to
software quality (maintainability) measures. The remaining articles focus on how code
refactoring, or the use of reengineering techniques, or programming languages, affect energy
consumption. Another aspect to highlight is that only 20% of the studies ([6], [7], and [8]) deal
with the real measurement of energy efficiency. The rest of the articles estimate energy
consumption or present only theoretical proposals.

Namely, the studies [1], [2], [3] have tackled the relationship between maintainability and
energy consumption under a theoretical perspective, without performing empirical analysis.
Other works have studied in an empirical perspective the relationship between some software
features, such as the programming language, or refactoring and bad smell techniques, with the
energy consumption ([4], [5], [6], [7], [10], [11], [12], [13], [15]). To the best of our
knowledge, the studies [8] and [14] are the ones more directly related with our current work,
as they attempt to evaluate the relationship between maintainability measures and energy
consumption. However, Hindle (2015) focused on only one measure (lines of code) for the
evaluation and the study by Cruz et al. (2019) is focused on a different domain (Android
applications).

Furthermore, for our study, we used a hardware device (hardware-based approach) to
measure the power of a specific component or the overall system. The measuring instrument
employed was EET, which allows us to obtain detailed measurements from different compo-
nents of the DUT (processor, hard disk, graphic card), along with the total energy consumption
of the PC. In addition, this device has a higher sampling rate than other devices used in other
articles. This means that the energy measurements provided by EET are more precise than the
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other proposals, giving more accurate information about the relationship between the
energy consumption of the software and the characteristic studied in each case (in our
case, the maintainability).

6 Conclusions and future work

In this work, an empirical study has been presented which aims to discover whether the energy
consumption of certain software when run is affected by different maintenance measures
(Total Lines Of Code, Cyclomatic Complexity, Percentage of Comments in the Code, and
Percentage of Duplicate Code Lines).

The presented work is a novel study where an empirical analysis of how some software
maintainability measurements can affect the energy consumption has been carried out, using a
measuring instrument that allows us to obtain accurate results of the energy consumption of
different hardware components. To carry out this study, four different versions of the Redmine
software were chosen, and four test cases were launched, measuring the energy consumption
of different hardware components of the computer it is run on (processor, HDD, graphics card,
and total DUT).

Our results show that:

& The amount of Total Lines Of Code (M1) and of Cyclomatic Complexity (M2) has grown
in each successive version.

& The values of Percentage of Comments in the Code (M3) and the Percentage of Duplicate
Code Lines (M4), in contrast to M1 and M2, have not increased in each successive
version. In some versions, the values of these measurements have even diminished in
comparison with the previous version.

& The consumption of the energy of the processor (ECProc) and the total energy consumed
by the DUT (ECTotal) increase in each of the successive versions, following a very
familiar pattern.

& Nevertheless, the energy consumption of the hard disk (ECHdd) and of the graphics card
(ECGraph) did not follow the same pattern as the previous consumption measurements.
The latest version is not always the one that has greater energy consumption than the one
before it.

& There seems to be a correlation only between the measurement of Total Lines Of Code
(M1) and the energy consumption of the processor (ECProc) and of the DUT (ECTotal).
We may thus conclude that only the measure of the TLOC can affect the energy
consumption.

For the rest of the quality measurements, no significant correlations with energy consumption
were found that would indicate that the energy consumption might be affected by them.

The results obtained provide us with some evidence that the energy consumption of a given
software product can be affected by software quality measures. This evidence can allow us to find
software measurements that could be employed as indicators of the impact on the energy consump-
tion of the software. This study lays the foundations to research in greater depth into the relationship
of maintainability and software consumption, selecting more software applications and a greater
number of versions for analysis.Wewould thus be able to establishwhether the result obtained from
this analysis can be extrapolated to other software applications.
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This article also throws into relief the importance of using measurement devices such as
EET in similar empirical studies. They allow us to obtain exact measurements of the
power consumed in the different hardware components and of the software when it is
run on a computer.

In conclusion, there are some initial signs about how the amount of Total Lines Of Code
can affect the energy consumption of the software. We intend to use these results as a basis for
more in-depth research about the impact of different quality measures on the energy consump-
tion. We believe that this type of research can be very useful from the developer’s point of
view; the professionals will be able to take the results obtained into account in the development
of software that is more efficient as far as its energy use is concerned.

Funding This work was part of the BIZDEVOPS-Global (RTI2018-098309-B-C31), supported by the Spanish
Ministry of Economy, Industry and Competitiveness and European FEDER funds, and was also part of the SOS
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